Real Options in Energy Markets

dr Cyriel de Jong

Maycroft Consultancy and Erasmus University

dejong@maycroft.com

Overview

- Why real options?
- Why real options in energy markets?
 ~ Selected applications
- Why use simulations?
 ~ The least-squares Monte Carlo approach
- Case: gas storage

Real Options

What are real options?

- The Real Options approach is an extension of financial options theory to options on real (non financial) assets
 - \sim Options are contingent decisions
 - Give the opportunity to take action after you see how events unfold
 - ~ Payoff is not linear
- Use financial market theories for investment decisions and strategy

Examples of real options

- Option to postpone / defer
- Option to expand
- Option to learn
- Option to abandon / disinvest / scale down
- Option to mothball
- Option to switch (inputs, outputs, country)

Problems with traditional NPV

- Require forecasts
 - \sim One single scenario analysed
 - ~ Difficulty for finding an appropriate discount rate when options are present
- Future actions are known
 - ~ No flexibility for taking action during the course of the investment project

History of real options

- Term introduced in 1977 by Stewart Myers (1973 = Black Scholes)
- In the 1980s literature primarily focused on the valuation of natural resources (exploration, mining, land use)
- In the 1990s theory applied in practice
- Last few years: applications in R&D, multinational firms, drug development, internet companies, airlines, energy, ...
- Complexity still hampers widespread use

When is RO analysis appropriate?

- When the environment is uncertain: technical and/or economical:
 - ~ Average scenario does not work
- When the initial investment is relatively large
- When there is flexibility to respond to uncertainty:
 - ~ risk < uncertainty
 - ~ uncertainty (also) creates value

Applications of Real Options in Energy

Power plant

• A power plant may be treated as a call option (series) on the spark spread (= marginal revenue):

$$\operatorname{Rev}_{t} = \max\{P_{t} - h \cdot G_{t}, 0\}$$

Power price

Fuel price

Heat rate

~ Positive spark spread:

~ Negative spark spread:

The states a power plant can be in

Swing option

- The flexibility in the quantity of energy which the holder of the option can receive
- Swing contracts have been engineered because of the uncertainty in the end user's energy consumption
- Traditionally in gas:
 - swing delivery, take-or-pay, flexing, volumetric or interruptible contracts, storage
- Increasingly in power and coal

Simulations: Least-squares Monte Carlo

Traditional solution methods

- Diffusion models
- Black-Scholes type models
- Price and decision trees

Problems:

- Energy prices do not fit models
- Asset flexibility hard to capture

Least-squares Monte Carlo

- Carriere (IME, 1996), Longstaff and Schwartz (RFS 2001, Risklab 2001 presentation)
- Breakthrough in convergence speed
- Applied to American-style financial options
- Idea:
 - Avoid the problem of forward-looking nature of simulations
 - OLS regressions to calculate 'expected continuation value' and thus the optimal exercise strategy

Tree or simulations?

Example

- Suppose we have an American style option:
 - ~ Exercise price € 20
 - \sim Time-to-maturity 2 days
 - \sim No dividends, no interest
- We compare a 'traditional' tree to 'LSMC'
- Central to both valuation is the comparison at time t=0 and t=1 of the:
 - ~ Direct pay-off = P(t) 20
 - \sim Expected continuation value = E[CV]
 - * Tree approach: E[CV(t)] = (CV(t+1,up) + CV(t+1,down))/2
 - * Simulation approach: E[CV(t)] = fitted value of regression

TREE APPROACH

Market price

Direct pay-off

Expected continuation value

Option value = maximum of a) direct pay-off OR 0 b) exp. cont. value 6.00 4.20

Strategy

SIMULATION APPROACH

Market price

22.00-25.00-24.00 22.00-23.00-26.00 22.00-22.00-19.00 22.00-21.00-21.00 22.00-19.00-17.50

Direct pay-off

2.00 - 5.00 - 4.00 2.00 - 3.00 - 6.00 2.00 - 2.00 - 1.00 2.00 - 1.00 - 1.002.00 - -1.00 - 2.50 **Regression at t = 1: Regress CV(2) on P(1)** CV = -16.5 + 0.85*P + e

Expected continuation value

2.32-	4.75-	0.00
2.32-	3.05-	0.00
2.32-	2.20-	0.00
2.32-	1.35-	0.00
2.32-	0.00-	0.00

Option value = maximum of							
a) direct pay-off OR 0							
b) exp. cont. value							
2.3	2- 5.00)—	4.00				
2.3	2- 3.05	5—	6.00				
2.3	2- 2.20)—	0.00				
2.3	2- 1.35	;—	1.00				
2.3	2- 0.00)—	0.00				
2.32							
Strategy							
wait	exerc	e	xerc				
wait	wait	e	xerc				
wait	wait	n	one				
wait	wait	e	xerc				
wait	wait	n	one				

Does LSMC work well?

- Regressions carried out fast
- Depending on the problem we need higher order regression
- Convergence results verified and good
- We always use two sets of simulations:

 To determine exercise strategy (run regression)
 To evaluate strategy and calculate option value
 → Avoids any potential over-fitting

Complex distributions in energy

- General characteristics of spot prices, especially electricity, but also gas:
 - \sim Mean-reverting
 - ~ High and time-varying volatility
 - ~ Jumps, regime switches
- General characteristics of forward prices:
 ~ Volatility decreases with maturity
 ~ Strongly correlated, seasonal, etc

Risk neutral simulations or Real world simulations?

- Option theory: if the option can be replicated with tradable instruments, then:
 ~ Use risk-neutral simulations, i.e. drift of simulations equals drift of tradable instruments
 ~ Discount pay-offs with riskfree rate
- In many energy real option applications the asset canNOT be replicated, so we use real-world simulations and higher discount rate

Case: gas storage

Na	itura	l Ga	s Co	nsun	nptic	n			Working Volume 2000	Working Volume 2030
800		1					OECD North	America	129	215
700							OECD Europ	ре	61	138
(00							OED Pacific		2	14
8 8							Transition E	conomies	132	266
Metr			<u> </u>				Developing (Countries	4	51
bic]							World		328	685
NO POP										
9 300 200										
100			20000							
0	NAM	EUR	PAC	LAM	FSU	AFR	MEA	ASI *		
				2 1973 □ 2	003					

Source: IEA Gas Information 2004

Purpose of storage

- Storage is a flexibility instrument:
 - \sim Balance supply with demand
 - ~ Compare to other flexibility instruments and market prices to derive value
- The general idea of storage is that it:
 - allows the owner with an end-user portfolio to meet fluctuations in demand, thus being a substitute for other contracts with flexibility (*internal optimization*)
 - allows any owner to benefit from market movements (*external optimization*)

Internal optimization

External optimization

External optimization

- Increasingly possible
- Optimal operation depends on the development of market prices and the ability to trade
- A user can benefit from:
 - ~ Predictable price movements:
 - * Summarized in the forward curve
 - * Yielding an intrinsic value
 - ~ Unpredictable price movements:
 - * Summarized in spot dynamics
 - * Adding an extra option value and yielding an extrinsic value

Integrated storage management

The storage model

Value future flexibility

• Situation:

- \sim Current storage level 5 mln GJ
- ~ Injection rate 0.06 mln, Withdrawal rate 0.25 mln GJ
- ~ Current spot price 3.00 €/GJ
- Problem: inject, withdraw or do nothing:
 - ~ Do nothing: Value of 5 mln GJ next day
 - ~ Inject: Value of 5.06 mln GJ next day €180,000
 - ~ Withdraw: Value of 4.75 mln GJ next day + €750,000

Derive the expected future (= next day's) value of different storage levels using the market as a benchmark

Least-squares Monte Carlo

1.Simulation set A

2. Regressions3. Exercise strategy

Day t Inv. level L Price P Inject? Do nothing? Withdraw?

4. Simulation set B: Evaluate strategy

Exercise frontier example

(for a day t and inventory level L)

Storage cost & revenue

Value drivers

MayStore01

Main Input

MayStore

Volume constraints

2

3

4

5

27.119

Flexibility Input

D

100

dav

200

300

400

0

0.5

1

1.5

2

Unrestricted inventory developments

Portfolio management

- Integration of market with portfolio:
 - ~ Reserve some capacity for portfolio, some for trading.
 - Determine optimal allocation by calculating opportunity costs

Conclusion

- Energy markets ideal environment to apply real option analysis:
 - ~ To make investment decisions
 - ~ To make trading profits
 - ~ To optimize portfolio management
- Simulations often needed:
 - \sim Non-normality

~ Joint model for several commodities or contracts